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Abstract—The detailed pattern of spatial structures for the reaction-diffusion system involving substrate-inhibited
reactions on immobilized uricase enzyme was studied. Depending on the governing pararmeters, three basic solutions
may exist and there are two kinds of possible branching, either successive primary bifurcation from a basic irivial
branch or consecutive secondary bifurcation. In both cases the branching follows the sequence of symmetric — asym-
metric — symmetric, and so forth. The emergence of subsequently more complex spatial structures with the increasing
length of systems suggests a close similarity to gradual buildup of complex morphogenetic patterns in developmental

biology.
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INTRODUCTION

A number of nonlnear reaction-diffusion systems can possess
more than one stable steady-state solution. Some of these solutions
can be spatially uniform while the others can feature non-uniform
distnbution m space (so called spatial structures). Existence of spa-
tially periodic solutions, conditions necessary for thewr occurrence,
and multiplicity are questions of considerable interest.

The emergence of spatial structures from a perfectly homoge-
neous medium is analogous to pattern formation in developmental
biology [Turmg, 1952; Goodwin, 1969, Goldbeter, 1973; Murray,
1982; Gaerer, 1981, Catalano, 1981], Benard convection m hydro-
dynamics [Chandrasekhar, 1981 ], and the non-uniform distribution
of concentration and/or temperature in chemaical reacton-diffusion
systems [Schmitz and Tsotsis, 1971, 1983; Eik and Dudukovic,
1983]. The dissipative structure for the “Brusselator”, a sunple auto-
catalytic ttimolecular reaction scheme, has been extensively stud-
ied by Prigogine and his associates [Glansdorft and Prigogine, 1971;
Prigogine and Lefever, 1968; Herschkowitz-Kaufinan and Nicolis,
1972; Bmeux and Herschkowitz-Kaufiman, 1979, Herschkowitz-
Kaufiman, 1975], Kubicek et al. [1978], and Janssen et al. [1983].
They have reported many mteresting phenomena such as multiple
symmetric and asymmetiic steady states, homogeneous periodic sol-
utions, and travelling, standing or rotating waves.

In this paper, we analyzed the properties of the diffusion-reac-
tion system with the substrate-inhabited immobilized enzyme kinet-
ics, frequently m the literature referred to as the “Thomas model”
[Kemevez et al., 1982]. The Thomas model has been proposed as
one of the possible mechanisms for pattern formation m develop-
mental biology. Emphasis 1s placed on the pattern of spatial struc-
tures emerging from the homogeneous medium in an immobilized
enzyme reaction-diffusion system. We will show that qualitative
features observed for an auto-catalytic reaction system remain un-
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changed.
GOVERNING EQUATIONS

The Thomas madel for the substrate-inhibited kinetics on immo-
bilized uricase enzyme [Kemevez et al., 1982] mvolves the follow-
mg arrangement. Essentially, two chemicals, uric acid (S) and oxy-
gen (A), diffuse from a reservoir maintained at constant concentra-
tions S and A, through an nactive membrane of thickiess L, onto
a membrane of thickness T, (=50 um) containing the immobilized
enzyme uricase as shown in Fig. 1. The two-dunensional plate s
closed on the ends and mmersed i the reservoir. The wnc acid and
oxygen diffuse on this membrane with diffusion coefficients Dg
and D, and react under the catalytic action of unicase enzymes sub-
ject to the followmg reaction rate expression:
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Fig. 1. One-dimensional immobilized uricase system.
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Here V,. K,,, and K, are constants. This reaction scheme exhibits
the characteristics of the substrate-inhibited reaction where K, is
related to the substrate mhubition rate. The small values of K, wmply
the large miubition of substrates. For fixed concentrations of A, the
reaction rate of substrate-inhibited kinetics may be similar to that
of Michaelis-Menten kinetics for the low concentrations of S.
Mass balances yield the following differential equations:
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For simplicity we assume that (1) there exists a concentration gradi-
ent only in the z-direction and (1) homogeneous distribution of the
enzyme uricase on the active layer.

A set of differential equations, Egs. (2) and (3), can be rewritten
m the following dimensionless form:
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subject to Neumann boundary conditions
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Here we have denoted s and a the dimensionless concentrations of
wic acid (S) and oxygen (A), respectively, ¢ the ratio of mass trans-
fer coefficients of oxygen to uric acid in the inactive layer, 3 the
ratio of diffusion coefficients of oxygen to uric acid mn the active
layer, x the dunensionless length, k the dunensionless mhibition
rate and 7T the dimensionless time. The various quantities in Egs.
(4) and (5) are defined as follows:
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A uniform steady state (S, 2) is obtained by solving the following
algebraic equations simultaneously:

pas
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The uniform states, which are also called basic solutions, are de-
scribed by Eq. (11)

§ +ps” +gs +r=0 and a =a, +é(§ —50) an

where
p=11<(1 —kso+§) (12)
q:%((l *pa, _So_%) {(13)
r=—sf. (14)

The number of basic solutions (one, two or three) depends on
the values of governing perameters, k, s,, a,, o and p and shows
no relationship with the parameters, yand [3. Tt is noted that the num-
ber of basic solutions 15 mdependent on the ratio of diffusion coef-
ficients of oxygen to unc acid m the active layer. In order to de-
termine the number of basic solutions, Cardan’s method [Hilde-
brand, 1968] for a cubic equation with real coefficients cen be ap-
plied to Eq. (11). The parameter D m Eq. (15) determmes the num-
ber of solutions in the following way:
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There can exist three, two or one basic solution for D<0, D=0
or D>0, respectively. The stability of basic solutions can be
determined by the eigenvalues of the linearized operator f,
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The basic solutions (5, a) are stable if all eigenvalues of the opera-
tor i have negative real parts and unstable if there is at least one
eigenvalue with positive real part.

For zero flux boundary conditions the eigenfunctions of the La-
placian operator in one-dimensional space can be expressed as cos
n7x (n=0, 1, 2, ). Therefore, the stability of basic solutions is de-
termuned by the sign of the eigenvalues (®,) satisfymg the follow-
g characteristic equation:

. —T,m, +A=0 20)
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where

21)
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Here p', q and ¢’ are defined by
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Uniform steady states can be destabilized into two ways; through
real eigenvalues (Re ©,>0, I, ®,=0) or ttrough complex ones (Re
®,>0, I, ©,=0). In the former case the mstability of umiform steady
states 1s ascertained when A is greater than zero (A>0). Therefore,
non-uniform steady states can oceur at the critical values of the bi-
furcation parameter ¥ satisfyng Eq. (22) when A 1 set to zero. These
values for yare called the primary bifurcation points (') on the basic
branches. The successive primery bifurcation pomnts can be easily
calculated for a set of discrete values of the wave number n.

Even though we can locate the primary bifurcation ponts an-
alytically, it 15 very difficult to calculate the whole parametiic de-
pendence of solutions and secondary bifurcation points in an an-
alytical way. Therefore, we will resort to a mmnencal scheme for

calculating the bifurcation diagram.

NUMERICAL RESULTS

In order to mvestigate the parametric dependence of solution
branches for a set of parabohc partial differential equations, Eqs.
(D-(7), we approximate the differential operator in space by the
Stormer-Numerov fimte difference scheme [Kam, 1989; Doedel,
1980] featuring the O(h*) accuracy where h is denoted by step size
m space. The complete bifiwcation analysis of a resulting system
of ordmary differential equations was peformed by usig the soft-
ware package AUTO [Kim, 1988]. The detailed algorithm for dis-
cretization of the differential operator with the O(h*) accuracy will
be found elsewhere [Doedel, 1980]. There are seven parameters,
o B 7ok s, and a, in Egs. (4) and (5). Among them the var-
1able Y, representing the dunensionless length of the system, is most
important. Therefore, we selected the variable ¥ as the bifurcation
parameter 1n this study.

The values of governug parameters are shown n Table 1. Ten

Table 1. Parametric values in substrate-inhibited enzyme systems

$o=102.5
a,~79.2
o=1.45
B=5.0
k=0.1
p=13.0
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Fig. 2. Bifurcation diagram for 10-poeint discretization of immobi-
lized uricase plate.
—— stable steady state, -———- unstable steady state, * bifurca-
tion point, [J limit point, M bifurcation and limit point.

grid pomts 1 space were used to discretize the differential operator
for the hifurcation analysis. The numerical calculation was per-
formed on CDC 730 and the error of ntegration was controlled to
six significant decimal places.

The complete furcation diagram “s; versus ¥ is displayed n
Fig. 2. The subscript 1 in s; on the ordmate represents the grid pomt
m space. In this figure the solid and dotted lines portray the stable
and unstable steady-state solutions, respectively. The small letters
(a, b, -, h) stand for the branches of steady state solutions while
the capital letters (A, B, -, P) represent the bifurcation and limit
pomts. Open circles and squares denote the bifircation and limit
ponts, respectively. The bifurcation-limit pomts are also represented
by the closed squares in this figure. The bifurcation and limit points
detected n the system considered are summarized in Table 2.

For all values of 7y there exists one basic trivial branch, 5=

Table 2. Summary of bifurcation and limit points

Point ¥ S Type*
A 9.1 7.84 BP
B 23.9 7.84 BP
C 36.3 7.84 BP
D 81.2 7.84 BP
E 95.45 7.84 BP
F 143.5 7.84 BP
G 2234 7.84 BP
H 90.2 9.54 BP+LP
I 89.2 6.32 BP
) 85.6 9.01 LP
K 180.3 9.83 LP
L 158.7 5.67 BP
M 180.3 493 LP
N 85.6 6.02 LP
O 161.1 9.88 BP
p 2135 7.84 BP

*BP: Bifurcation point
LP: Limit point
BP+LP: Bifurcation-limit point
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78479, a=13.9227 which is in good agreement with the analyti-
cal results obtamed from Eq. (11). The positive value of D (D=
2.4674x10% in Eq. (15) verifies the existence of a unique basic
brarich The primary bifurcation pomts are m full agreement with
those obtamed from Eq. (22) analytically. The branch ‘a’ of sym-
metric profiles corresponds to the branch of umform steady states
or a basic branch. There are several primary bifurcation points (A,
B,C.D,E. F, G, P) on the basic branch ‘a’. The bifurcation points
A and B, occurtmg at the branch ‘a” of symmetric solutions, give
1ise to a closed branch ‘b’ of asymmetric solutions. At the bifiwca-
tion pounts C end E, on the basic branch ‘a’, a closed branch ‘¢ of
symimetric solutions emeiges. From the pomt D on the basic branch
‘a’, a closed loop of asymmetric solutions, branch ‘d’ results. A
typical bifurcation-limit pomt H s displayed m Fig. 2. Thus pourt 1s
a bifurcation point of the branch ‘¢” of symmetric solutions because
an asyminetrical solution may emerge. On the other hand, H 15 a
limit pomt at the branch ‘d” of the asymmetiic solutions. At this
point two asymmetnic solutions collapse into a symmetric one.
It may be nfeired from the result obtamned on the branch ‘a’ to
‘d’ that a homogeneous steady state exists for the small size of sys-
tem (y<9.1) and this stable steady state does not change to any pei-
turbation m the concentration of unic acid and oxygen. As the length
of immobilized enzyme systems 1s increased (9.1 <y<23.9), the ho-
mogeneous steady state may be ditven unstable by diffusion and
asymunetric heterogeneous patterns are obtained. These spatial pat-
terns are relatively simple, asymmetric, and stable as shown in Fig.
5. The pattern 1s composed of two regions of substrate concentra-
tions S. One is higher concentration region of S(s>>s) and the other
is lower concentration region of S(s<§). As the values of y increase,
the steep profiles of substrate concentrations S are developed. These
have been studied by Kernevez [1982] and Murray [1982]. The
former applied the diffusion-dniven mstability to sequential com-
partment formation in drosophila wings using Kauffamn’s model
and the latter proposed the mechanism for generating the prepat-
tem for ammal coat markings. With further mcreasing size of sys-
tems (23.9<0y<36.3) the basic branch ‘a’ becomes again stable re-
sulting from exchange of stabilities between pomts B and C. There
also exists the stable homogeneous steady state. This observation
may indicate the predominance of reaction kinetics in a certain size
of system (23.9<y<36.3). The homogeneous steady state becomes
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Fig. 3. Bifurcation diagram, branch e (asymmetric solutions).
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Fig. 4. Bifurcation diagram, branch f (asymmetric solutions).
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Fig. 5. Spatial profiles at particular points on branch b.

unstable and heterogeneous patterns are obtamed for larger size of
systems (y>36.3).

At the branch ‘¢’ of symmetric solutions there 1s a bifurcation
point (secondary hifurcation pomt) I wiuch gives nise to a branch
‘e’ of asymmetric solutions, see Fig. 3. At point I the bifurcation is
backward with an exchange of stabilites and the secondary bifur-
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Fig. 6. Spatial profiles at particular points on branch ¢
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cation branch 1s unstable at that pomt. Four limit ponts (J, K, M
and N) occurning at the above-mentioned branch ‘e’ are depicted.
From the pomt F on the basic branch “a’, a branch “f” of symmet-
1ic solutions emerges, see Fig. 2. At the bifurcation pomt 0, a brarich
of asymmetric sohition ‘g’ resulis as depicted in Fig. 4. In Figs. 3
and 4 the solid and dotted lines represent the asymimetric and sym-
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Fig. 9. Spatial profiles at particular points on branch f.

January, 2001

15

&1 62 63 6l

65 66 67 68

0 1

—%

Fig. 10. Spatial profiles at particular points on branch g.
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Fig. 11. Spatial profiles at particular points on branch h.

metric solutions, respectively. Another branch ‘h’ of asymmetric
solutions is created from the bifurcation point P on the basic branch
‘a’, see Fig. 2.

The spatial profiles at particular pomts on the branches in Fig,. 2,
are depicted in Figs. 5-11. In these figures the solid lines dencte the
stable steady states whule the dotted lines represent the unstable
steady solutions. The v values of numbered points are summarized
m Table 3. The basic branch ‘a” becomes always unstable for larger
values of Y (¥>36.3). For smaller values of ¥ as shown m Figs. 5 and
6, the spatial pattems are relatively simple because there exist one
region of higher substrate concentration (s>s) and one region of
lower subsirate concentration (s<s). As the values of ¥ increase fur-
ther, the spatial patterns become complex with two regions of hugher
substrate concentration and two regions of lower substrate concen-
tration alternately as shown in Figs. 7 and 8. For the hagher values
of v the spatial patterns become more and more complex because
three regions of higher and lower substrate concentration exist al-
temately as depicted in Figs. 9 and 11. Thus, the buildup of more
complex patterns m compartment formation of drosophila wings,
prepattern for animal coat markings and so forth, can be in part ex-
plamed with these results. It is obvious that the length of the sys-
tem (y) predicts the emergence of more and mare complex spatial
structures. The branches of asymmetric solutions possess one typi-
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Table 3. The 7y values of important points

Table 4. Muitiple steady states in immeobilized enzyme systems

Branch  Point ¥ Branch  Point ¥ ¥ Number of solutions (no. of stable solutions)
b 11 9.2(u)* f 51 145.0(w) 0.0, 9.1 1D
12 1010w 52 150.2(w) (9.1, 23.9) 3(2)
13 16.81) 53 172.2(w) (239, 363) 1(1)
14 22.8w) 54 223.4(w) (36.3, 81.2) 3(2)
15 2390 55 227.2(D) (812, 85.6) 5(2)
16 20.90) 56 172.5() (85.6, 892) 9 (4)
17 17.30) 57 150.9() (89.2, 90.2) 7 (4)
18 10.1() S8 145.1() (902, 95.4) 5(2)
¢ 21 37.0(w) g 61 162.5(u) (95.4, 143.5) 3(2)
22 65.0(u) 62 177.1(u) (143.5, 158.7) 5(2)
23 84.1(w) 63 199.6(u) (158.7, 161.1) 7 (4
24 95.0(u) 64 208.7(u) (161.1, 180.3) 9 (4)
25 89.4(H 65 2087 (180.3, 213.5) 5(2)
26 79.20) 66 199.6(D (213.5, 223.4) 3(2)
27 57.3(D 67  182.6(l) (223.4, 300.0) 5(2)
22 45.2(D 68 163.0(D
d 31 817w h 71 224.9(u) _ o
32 84.7(u) 79 249 4(w) —)secondaly—.)terualy—%: In both cases.the branching 15 of the
33 86.1(u) 73 276.5(u) type syrmnetnc—)asynuneMc—{symmeMc—)---: The em.elgence
34 89.9(u) 24 205 3()) of more and more corpplg}(.spahal structures Wl'[.h increasing val-
35 89.9(7) 75 249.4(1) ues of system size (}) 1s.sumlar to the gradual bmldup of complex
morphogenetic patterns in the developmental biology and deserves
36 86.3() 76 236.9(D further study.
37 83.9() 77 227.0(D
38 81D 78 223.4(0) ACKNOWLEDGEMENT
e 41 86.8(u)
42 134.8(w) The bifurcation diagrams reported n this paper have been cal-
43 177.9(w) culated by the bifurcation package AUTO which was provided by
44 160.1(7) Dr. E. Doedel. Computer Science Departinent, Concordia Uni-
45 174.7(0) versety, Montreal, Canada. His assistance and discussion 1s si-
46 129.7() cerely appreciated.
47 98.8(D
48 89.1(H NOMENCLATURE
*: u denotes the upper part of each branch from the basic ‘a’ )
while / represents the lower part of it. A  concentration of oxygen
a : dimensionless concentration of oxygen (= I%)
cal property, namely mirror image profiles. For instance, the asym- C : Jacobian matrix defined by Eq. (20)
metric profiles on the identical branch (12 & 18, 31 & 38,34 & 35 D : discriminant defined by Eq. (16)
and 64 & 65) clearly show the charactenistics of mirror nmages. One D, D, : diffusion coefficients of uric acid and oxygen i the ac-
of the interesting things to note is the number of steady states. The tive layer, respectively
multiplicity of steady states n Fig. 2 15 summarized in Table 4. fg : reaction kanetic term defmed by Eqgs. (5) and (6)
CONCLUSIONS k : dimensionless inhibition rate (= \Ii—":)
K,, K, :constants
The continuous dependence of the character and number of sol- L,L, :thickness of the inactive and active membrane layer, re-
utions on the bifurcation parameter 7 for the Thomas model has spectively
shown that the primary bifurcation branches form the closed curves P> d,1 : constants defined by Egs. (21) and (23)
and three basic solutions at most are possible. The multipheity of P P, mass transfer coefficients of uric acid and oxygen through
steady state solutions is expected and among them a countable num- mmactive membrane, respectively
ber of solutions are stable. R : reaction rate defined by Eq. (1)
There are two possible ways of branching the solutions. One is S : concentration of uric acid
the successive branching from the primary bifurcation ponts on S . dimensionless concentration of uric acid (= §>

the basic branch. The other is consecutive branching, i.e., primary

m
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u - constant defined by Eq. (17)

v : constant defined by Eq. (18)

V., : reaction rate constant

X : dimensionless length (=E)

z : space coordmnate

Greek Letters

o s ratio of mass transfer coefficients of oxygen to uric

acid (= %‘)
5

B : ratio of diffusion coefficients of oxygen to uric acid
(=22
Dy
2
: dimensionless length (= Pl )
Dy

. determinant defined by Eq. (23)

p . dimensionless reaction rate constant (= %)
5
T . dimensionless time (= Ilft)
L
0] s eigenvalues in Eq. (21)
Superscript
- : steady state
Subseripts
i : grid point in space
n : wave numnber
o : condition at the surrounding reservoir
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