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Abstract-The detailed pattern of spatial sla-uc~res for the reaction-diffnsion system involving substrate-inhibited 
reactions on immobilized uricase enzyme was studied. Depending on tile governing parameters, three basic solutions 
may exist and there are two kinds of possible branching, either successive primary bifurcation from a basic trivial 
branch or consecutive secondary bifurcation. In both cases the branching follows the sequence of symmetric --+ asym- 
metric --+ symmetric, and so forth. The emergence of subsequently more complex spatial strucan-es with the increasing 
length of systems suggests a dose similarity to gradual buildup of complex morphogenelic patterns in developmental 
biology. 
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I N T R O D U C T I O N  changed. 

A ntmther of nonlinear maclion-diffusion systems can possess 
more than one stable steady-state solutiort Some of these solutions 
can be spatially tuaifoml while the others can fea~re non-unifoml 
distribution in space (so called spatial structtu-es). Existence of spa- 
tially pafiodic soltaions, conditions necessary for their occurrence, 
and multiplicity are questions of considerable interest. 

The emergence of spatial sa-uctta-es fi-om a perfectly homoge- 
neous inedium is analogous to pattern fomaation in developmental 
biology [Turing, 1952; Goodwin, 1969; Goldbete~; 1973; Mun-ay, 
1 982; Gierei; 1981 ; Catalano, 1 981], Benm-d convection in hy&o- 
dynamics [Chandmsekhar, 1981], and the non-uniform distribution 
of concentration and/or temperature in chemical reaclion-diffusion 
systems [Sctnnitz and Tsotsis, 1971, 1983; Erk and Dudukovic, 
1 983 ]. Tile dissipative structure for tile "Brusselator", a simple auto- 
catalytic Uilnolectdar reaction scheme, has been extensively stnd- 
ied by Prigogine and his associates [Glansdorff and Prig ogine, 1 97 1; 
Pligogine and Lefevei; 1968; Herschkowitz-Kattfinan and Nicolis, 
1 972; Emet~x and Herscbkowitz-Kattfinan, 1979; Herscbkowitz- 
Kaufinan, 1975], Kubicek et al. [1978], and Janssen et al. [1983]. 
They tkave reported many interesting phenomena such as multiple 
symmetric and asymmetric steady states, homogeneous periorlic sol- 
utions, and Uavelling, standing or rotating waves. 

In this paper, we analyzed the properties of the diffusion-reac- 
lion system with tile substpate-inhibited iImnobilJzed enzyme kinet- 
ics, fi-equently in the litemaxre referred to as the "Thomas model" 
[Kemevez et al., 1982]. The Thomas model has been proposed as 
one of the possible mechanisms for pattern fommtion in develop- 
mental biology. Emphasis is placed on the pattem of spatial slmc- 
ttn-es emerging fi-om the homogeneous medium in an immobilized 
enzyme reaction-diffusion system. We will show that Cltkalitative 
features observed for an auto-catalytic reaction system remain un- 
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GOVERNING EQUATIONS 

The Thomas mcdel for the substeate-inhibited kinetics on immo- 
bilized uricase enzyme [Kemevez et al., 1982] involves the foUow- 
ing an-angemenL Essentially, two chenficals, uric acid (S) and oxy- 
gen (A), diffuse from a reservoir mahltained at constant concentra- 
tions So and As through an inactive membrane of thickness L~ onto 
a me~nbrane of thickness L2 ( -50 bun) coiltaining the immobilized 
enzyme uricase as shoval in Fig. 1. Tile two-dimensional plate is 
closed on file ends and mmlersed in file reservoh: Tile uric acid and 
oxygen diffuse on th/s menabrane with diffusion coefficients D~ 
and DA and react under tile catalytic action of uricase enzymes sub- 
jectto tile following reaction rate expression: 

p. v;,,a s/(K,,, +s +s~/I<0 (1) 

Fig. 1. One-dimensional immobilized uricase system. 
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Spatial Stmcttaes Evolving from Homogeneous Media in Immobilized Enzyme Systems 15 

Here V,,, K,,, and K, are constants. Tim reaction scheme exhibits 
the characteristics of the subslrate-inhibited reaction where K, is 
related to the substmte inhibition rate. The small values of K, imply 
the Mge inhibition of substPates. For fixed concentrations of A, the 
reaction rate of subslrate-inhibited ldnetics may be similar to that 
of Michaelis-Menten kinetics for the low concentrations of  S. 

Mass balances yield the following differential equations: 

aS =D O2S +Ps(So -S) V,,,AS (2) 
Ot ZOz~ K,. +S +S2/Kz 

OA -D  o~A +P,(ao -A) V,,,AS 
at *az ~ K., +S + S2/K. (3) 

For simplicity we assume that (i) them exists a concentration gradi- 
ent only in the z-dkectic~ and (ii) hc~nogeneous distribution of the 
enzyme uxicase on the active layer. 

A set of differential equations, Eqs. (2) and (3), can be rewritten 
in the following dimensionless form: 

as s  +TI(So-S) pas [ s  +f(s, a) 0) O~ Ox ~ [ l+s+ks~J ~x ~ 

where 

p=~(1-kso +9)  (12) 

q=~(1 +9ao - s o - - ~ )  (13) 

So r = - g .  (14) 

The munber of basic solutions (one, two or three) depends on 
the values of govemizg pm-ameteiz, k, sc, ac, o~ and p and shows 
no relationship with the lmmmeters, 7 and [3. It is noted that the ntun- 
ber of basic solutions is independent on the Patio of cliffiasion coef- 
ficients of oxygen to tmic acid in the active layei: In order to de- 
tennine the number of basic solutions, Cardan's method [Hilde- 
bPozld, 1968] for a cubic equation with real ccefficients can be ap- 
plied to Eq. (11). The parameter D in Eq. (15) detmmines the nun> 
ber of solutions in the following way: 

aa .O's J oas ] ~a'a . 
+' l~(a~ a) 1 +s +ks 2j~ =p~-~ +g(s, a) 

(5) 

subject to Netu-nann boundary conditiom 

0s 0a 
x=0; ax Ox 0 (6) 

0s 0u=0 
x = l ;  Ox Ox " (~ 

Here we have de~aoted s and a the dhnensionless conce~atrations of 
t a c  acid (S) and oxygen (A), respectively, 0~ the Patio of mass b-,~ts- 
fer coefficients of oxygen to uric acid ha the inactive layer, [3 the 
ratio of diffusion coefficients of oxygen to uric acid m the active 
layer, x the clinlensioifless length, k the clinlensioifless inlfibition 
Pate and "c the dmaemionless time. The various quantities in Eqs. 
(4) and (5) are defined as follows: 

S A z D., s : ~ ,  a : ~ ,  x:~, "c: ~-~t 

PA [3 = DA PsL 2 
c~ p~, Ds y De 

V., V., 
p = ~  k K~, (8) 

A ut~bma steady state (s, ~t) is obtained by solving the following 
algebraic equations simultaneously: 

f(;, Ft)=So-; pas 0 (9) 
1 +s +k; ~ 

~~ 
g(;, g)=c~(ao-~) pas =0. (10) 

1 +~ +k~ 2 

The unifoma states, which are also called basic solutior~s, are de- 
scribed by Eq. (11) 

~ +1 ~ ;3 +pff2 +q; +r =0 and a =ao ~(S-So) (11) 

where 

U=k(l+pao s o - ~ )  3--~(1 kso+P) 2 

V-- S~ - ~ ~k~(1 kso+P)( l+Pao so ~-~) 

+ s Ps~ 

(16) 

07) 

There can exist three, two or one basic solution for D<O, D=O 
or D>O, respectively. The stability of  basic solutions can be 
determined by the eigenvalues of tile linearized operator ~,  

~= d,-7~ +Ol l  12 ' 

C21 [Bd-%2 -~- C22 

08) 

where 

% ~ )  Os of(;' I)) 
c .  ~i aa 

c =  c, ,  = ag(s ,~)  ag(;, " 

aa 

(19) 

The basic solutions (~, ~) are stable if all eigenvalues of the opera- 
tor .'l have negative real parts and unstable if there is at least one 
eigenvalue with positive real part. 

For zero flux boundary conditions the eigenfunctions of the La- 
placian operator m one-dmaemional space can be expressed as cos 
nn'x (n=0, 1, 2, .--). Therefore, the stability of basic solutions is de- 
termined by the sign of the eigenvalues (c0,) satisfying the follow- 
hag characteristic equation: 

m~-T,m,+A=0 (20) 
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16 S.H. Kim et al. 

where 

} T,=- (n  )(1+[3)+ (ks -1) (So-s ) -ps :  
1 +s +k; ~ 

(21) 

A :p"/~ +q"g +r'. (22) 

Here p', q' and ~ are defined by 

{ (k;~ -1)(s~ + P;  ~ ~4 P(k;~- l ) (s~  
p '= 1 ( l + ; + k ~ ) ;  j [  l+s+ks~j  (l+;+k;~)~ 

(23) 

= ( n ~ / ~  + ~ ~ ~ - ~(k;~ - ~)(so - ; ) [  (24) q' 
! (i +~ +k;~)~ ] 

r' [3(n~) 4 (25) 

Uniform steady states can be destabilized into two ways; through 
real eigenvalues (Re 0)~>0, L 6% 0) or tt~ough complex ones (Re 
r I,,, 6%~0). In the fomler case the instability of unifonn steady 
states is ascertained when A is greater than zero (A>0). Therefore, 
non-unifoml steady states can occur at the critical values of the bi- 
furcation paranleter 7 satisfying Eq. (22) whenA is set to zero. These 
values for ~ are called the primary bifurcation points (~) on the basic 
branches. The successive prmla-y biftwcaticn points can be easily 
calculated for a set of discrete values of the wave ntu-nber n. 

Even though we can locate the primary bifurcation points an- 
alyticaUy, it is very difficult to calculate the whole parametric de- 
pendence of solutions and secondary bifiarcation points in an an- 
alytical way. Therefore, we will resort to a nonlerical scheme for 
calculating the bifurcation diagram 

N U M E R I C A L  R E S U L T S  

In order to investigate the parametric dependence of solution 
branches for a set of parabolic partial differ~ltial equations, Eqs. 
(4)-(7), we approxhnate the differential operator in space by the 
Stomler-Nlunerov filfite difference scheme [Kim, 1989; Doedel, 
1980] fea~ritlg the 0(h 4) accuracy where h ks denoted by step size 
in space. The complete bifurcation analysis of a resultiig system 
of ordinary differential ecluafions was pefomled by using the soft- 
ware package AUTO [Kiln, 1988]. The detailed algorithm for dis- 
cretizafion of the differerlfial operator with the 0(h 4) accuracy will 
be found elsewhere [Doeclel, 1 980]. There are seven parametep~, 
ct~ ~, 3,, 13, k, so, and a o in Eqs. (4) and (5). Amollg them the var- 
iable 3', represenlJllg the dimensionless length of the system, is most 
important. Therefore, we selected the variable 3, as the l~tfilrcation 
parameter in this study. 

The values of govelTnng parameters ~ce shown in Table 1. Ten 

Table 1. Parametric values in substrate-inhibited enz3ane systems 

so=102.5 
ao=79.2 
cr 

~:5.0 
k=0.1 
p=13.0 

Fig. 2. Bi[m'cation diagram for 10-point discretization of hmnobi- 
lized uricase plate. 

stable steady state, . . . .  unstable steady state, :2: bifurca- 
tion point, [] limit point, �9 bifurcation and lirmt point. 

grid points in space were used to discretize the diffe~mNal operator 
for the bifiarcation analysis. The ntmlerical calculation was per- 
formed on CDC 730 and the eiror of integration was controlled to 
six significant decimal places. 

The complete bifurcation diagram "s~ versus ~'  ks displayed in 
Fig. 2. The subscript i in s, on the crdinate represents the grid point 
in space. In this figure the solid and clotted lines pom-ay the stable 
and unstable steady-state solutions, respectively. The small letters 
(a, b, ..., h) stand for the branches of steady state solutions while 
the capital letters (A, B, ---, P) represent the bifurcation and limit 
points. Open circles and squares denote the bifurcation and limit 
points, respectively. The biftaeaticn-limit points are also represented 
by the dosed squares in t t~ figure. The bifiarcation and limit points 
detected in the system considered are summarized in Table 2. 

For all values of 3' there exists one basic h-ivial branch, s = 

Table 2. Summary  of bifurcation and limit points 

Point y sl Type* 

A 9.1 7.84 BP 
B 23.9 7.84 BP 
C 36.3 7.84 BP 
D 81.2 7.84 BP 
E 95.45 7.84 BP 
F 143.5 7.84 BP 
G 223.4 7.84 BP 

H 90.2 9.54 BP+LP 
I 89.2 6.32 BP 
J 85.6 9.01 LP 
K 180.3 9.83 LP 
L 158.7 5.67 BP 
M 180.3 4.93 LP 
N 85.6 6.02 LP 
O 161.1 9.88 BP 
P 213.5 7.84 BP 

*BP: Bifurcation point 
LP: Limit point 
BP+LP: Bifurcation-limit point 

January, 2001 



Spatial Stmcttues Evolving from Homogeneous Media in Immobilized Enzyme Systems 17 

7.8479, a = 13.9227 which is m good agreement with the analyti- 
cal results obtained fi-om Eq. (11). The positive value of D (D~ 
2.4674 x 10 s) m Eq. (15) verifies the existence of a tafique basic 
branch The prhuary bifurcation pok~  are m frill agreement with 
those obtained fi-om Eq. (22) analytically. The branch 'a '  of sym- 
metric profiles con'esponds to the brand1 of ~fifcml steady states 
or a basic branch. There are several primary bifurcation points (A, 
B, C, D, E, F, G, P) on the basic br0ndl 'a ' .  The bifurcation points 
A and B, occtaving at the branch ' a '  of synuuetfic solutions, give 
rise to a closed branch 'b '  of asymmetric solutions. At the bifurca- 
tion poh~  C and E, on the basic branch' a', a dosed brand1 ~ of 
symmetric solutions emerges. From the point D on the basic branch 
'a ' ,  a closed loop of asymmetric solutions, branch 'd '  results. A 
typical bifurcation-lmfit point H is displayed in Fig. 2. This point is 
a bifurcation point of the branch'c' of sylmnelric solutions because 
an asymmetrical solution may emerge. On the other hand, H is a 
lflnit point at the branch 'd '  of the asymmetric solutions. At tiffs 
point two asymmetric solutions collapse into a symmetric one. 

It may be iiffen-ed fi-om the result obtained on the branch 'a '  to 
'd '  that a homogeneous steady state exists for the small size of sys- 
tem (7<9.1) and this stable steady state does not change to any per- 
mrbation in the concenbation of uric acid and oxygerL As the length 
of hmnobilized enzyme systems is increased (9.1 <T<23.9), the ho- 
mogeneons steady state may be &iven t~astable by diffusion and 
asymmebic heterogeneous patterns are obtained. These spatial pat- 
terns are relatively shnple, asymmetric, and stable as shown in Fig. 
5. The pattem is composed of two regions of substmte concentra- 
tions S. One is higher concentration region of S(s>s) and the other 
is lower conce~/mtion region of S(s<s). As the values of'g increase, 
the steep profiles of subsbate concentrations S are developed These 
have been studied by Kernevez [1982] and Murray [1982]. The 
fomler applied the diffusion-&iven instability to sequential com- 
parauent fomlation in &osoptfila wings using Kauffanm's model 
and the latter proposed the mechanism for generating the prepat- 
tem for animal coat markings. With further increasing size of sys- 
tems (23.9<T<36.3) the basic branch ' a '  becomes again stable re- 
sulfiig fi-om exchange of stabilities between points B and C. There 
also exists the stable homogeneous steady state. T t~  observation 
may indicate the predomfl~ance of reaction kinetics in a certain size 
of system (23.9<7<36.3). The homogeneons steady state becomes 

Fig. 4. Bifurcation diagram, branch f (asymmetric solutions). 

Fig. 5. Spatial profiles at imrticular points on branch b. 

unstable and het~ogeneous patterns are obtained for larger size of 
systems (7>36.3). 

At the branch 'c '  of symmetric solutions there is a bifurcation 
point (secondary bifurcation point) I which gives rise to a branch 
'e '  of asymmetric solutiorLs, see Fig. 3. At point I the bifi~cation is 
backwad with an exchange of stabilities and the secondmy bifur- 

Fig. 3. Bifurcation diagram, branch e (asymmetric solutions). Fig. 6. Spatial profiles at particular points on branch c. 
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18 S.H. Kim et al. 

cation branch is unstable at that point. Four lmfit points (J, K, M 
and N) occurring at the above-mentioned branch ' e' are depicted. 
From the point F on the basic h'anch 'a ' ,  a branch ' f '  of s3amnet- 
fic solutions emerges, see Fig. 2. At the bifurcation point 0, a hanch 
of asymmetric solution 'g '  results as depicted in Fig. 4. In Figs. 3 
and 4 the solid and dotted lines represent the asymmetric and s3au- 

Fig. 10. Spatial profiles at particular points on branch g. 

Fig. 7. Spatial profdes at particular points on branch d. 

Fig. 8. Spatial proffies at particular points on branch e. 

Fig. 9. Spatial proffies at particular points on branch f. 

January, 2001 

Fig. 11. Spatial profiles at particular points on branch h. 

metric solutions, respectively. Another branch "h' of asymmetric 
solutions is created from the bifurcation point P on the basic branch 
~ see Fig. 2. 

The spatial profiles at particular points oil tile branches in Fig. 2, 
are depicted in Figs. 5-11. In these figures the solid lines denote the 
stable steady states while tile dotted lines represent tile unstable 
steady solutiorts. The 7 values of numbered points are summarized 
in Table 3. The basic branch 'a '  becomes always trtstable for larger 
values ofy  (7>36.3). For smaUer values of'~ as shown in Figs. 5 and 
6, the spatial patterns are relatively simple became there exist one 
region of higher substrate concentration (s>s) and one region of 
lower subslrate concentration (s<s). As the values of 7 increase fur- 
ther, the spatial patterns become complex with two regions of higher 
subslrate concentration and two regions of lower subslrate concen- 
tration alternately as shown in Figs. 7 and 8. For the higher values 
of T the spatial pattems become more and more complex because 
three regions of higher and lower substmte concenlration exist al- 
ternately as depicted in Figs. 9 and 11. Thus, the buildup of more 
complex pattems in comparlment formation of drosophila wings, 
prepattem for animal coat markings and so forth, can be in ~ ex- 
plained with these results. It is obvious that the length of the sys- 
tem (2) predicts the emergence of more and more complex spatial 
struc~es. The brandies of asynmaetric solutions possess one typi- 
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Table 3. The yvalues of important points 

Branch Point 7 Branch Point 7 

b 11 9.2(u)* f 51 145.0(u) 
12 10. l(u) 52 150.2(u) 
13 16.8(u) 53 172.2(u) 
14 22.8(u) 54 223.4(u) 
15 23.7(t) 55 227.2(/) 
16 20.9(t) 56 172.5(/) 
17 17.3(I) 57 150.9(/) 
18 10.1(t) 58 145.1(/) 

c 21 37.0(u) g 61 162.5(u) 
22 65.0(u) 62 177.1(n) 
23 84. l(u) 63 199.6(u) 
24 95.0(u) 64 208.7(u) 
25 89.4(t) 65 208.7(/) 
26 79.2(I) 66 199.6(/) 
27 57.3(I) 67 182.6(/) 
28 45.2(t) 68 163.0(/) 

d 31 81.7(u) h 71 224.9(u) 
32 84.7(u) 72 249.4(u) 
33 86. l(u) 73 276.5(u) 
34 89.9(u) 74 295.3(/) 
35 89.9(I) 75 249.4(/) 
36 86.3(t) 76 236.9(/) 
37 83.9(t) 77 227.0(/) 
38 81.7(t) 78 223.4(/) 

e 41 86.8(u) 
42 134.8(u) 
43 177.9(12) 
44 160.1(t) 
45 174.7(t) 
46 129.7(t) 
47 98.8(t) 
48 89.1(t) 

*: u denotes the upper part of each branch from the basic ' a '  
while/represents the lower part of it. 

cal property, namely mirror image profiles. For instance, the asym- 
metric profiles onthe identical br~mh (12 & 18, 31 & 38, 34 & 35 
and 64 & 65) clearly show the ch~acteristics of mirror images. One 
of the interesting things to note is the number of steady states. The 
multiplicity of  steady states in Fig. 2 is summarized in Table 4. 

CONCLUSIONS 

The continuons dependence of the cha-acter and nt~-nber of sol- 
tNons on the bifurcation parameter 7 for the Thomas model has 
shown that the primary bift~cation branches folm the closed curves 
and three basic solutions at most are possible. The multiplicity of 
steady state solutions is ~,cpected and among them a countable num- 
ber of solutions are stable. 

There are two possible ways of branching the solutions. One is 
the successive branching from the primary bifurcation points on 
the basic branch The other is consecutive branching, i.e., primary 

19 

Table 4. Multiple steady states in immobilized enzyme systems 

7 Nmnber of solutions (i:o. of stable solutions) 

(0.0, 9.1) 1 (1) 
(9.1, 23.9) 3 (2) 

(23.9, 36.3) 1 (1) 
(36.3, 81.2) 3 (2) 
(81.2, 85.6) 5 (2) 
(85.6, 89.2) 9 (4) 
(89.2, 9O.2) 7 (4) 
(90.2, 95.4) 5 (2) 
(95.4, 143.5) 3 (2) 

(143.5, 158.7) 5 (2) 
(158.7, 161.1) 7 (4) 
(161.1,180.3) 9 (4) 
(180.3, 213.5) 5 (2) 
(213.5, 223.4) 3 (2) 
(223.4, 300.0) 5 (2) 

--+secondaiy--->tertiary--+---. In both cases the branching is of the 
type syrmnetfic-+asynmmtric-+symmetric-+--.. The emergence 
of more and more complex spatial slruc~res with increasing val- 
ues of system size (7) is similar to the gradual builcklp of complex 
mo@logenelic patterns m the developmental biology and deserves 
further study. 
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N O M E N C L A T U R E  

A 

a 

C 
D 
D~, DA 

f,g 

k 

K,,,,K~ 
LI, L2 

p', q', r' 
P~ PA 

R 
S 

S 

concentration of  oxygen 

dimensionless concentration of oxygen (= ~-7) 

Jacobian matrix defined by Eq. (20) 
discrimmant defined by Eq. (16) 
diffusion coefficier~ of uric acid and oxygen in the ac- 
tive layer, respectively 
reaction kinetic term defined by Eqs. (5) and (6) 

dimer~sionless inhibition rate (= ~-~') 

constants 
thickness of the inactive and active menabrane layei, re- 
spectively 
constants defined by Eqs. (21) and (23) 
mass transfer coefficients of uric acid and oxygen through 
inactive membrane, respectively 
reaction rate defined by Eq. (1) 
concentration of  uric acid 

dimensionless concentration of uric acid (= S )  
i%, 
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20 S.H. Kim et al. 

U 

V 

V~ 

X 

: constant defined by Eq. (17) 
: constant defined by Eq. (18) 
: reaction rate constant 

�9 dimensionless length (=L) 

: space coordinate 

Greek Letters 
c~ : ratio of  mass transfer coefficients of oxygen to ta'ic 

acid (= ~s.) 

[3 : ratio of diffusion coefficients of oxygen to uric acid 

(--~) 
~/ �9 dimensionless length (= ) 

A : determinant defined by Eq. (23) 

�9 dimensionless reaction rate constant (= -~-~") P 
- - 5  

x : dimensionless time (=~-~'t) 

co : eigenvalues inEq. (21) 

Superscript 
�9 steady state 

Subscripts 
i : grid point in space 
n : wave number 
o : condition atthe stwrotmding reservoir 
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